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Problem Set 2: String Data Structures

This problem set is all about string data structures (tries, suff trees, and suff arrays), their appli-
cations, and their properties. After working through this problem set, you'll have a deeper under-
standing of how these algorithms and data structures work, how to generalize them, and some of
their nuances. We hope you have a lot of fun with this one!

Due Tuesday, April 24 at 2:30PM
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Problem One: Time/Space Tradeofs in Tries  10 Points)
If you code up a trie, you’ll quickly run into a design choice: how do you represent the child pointers asso-
ciated with each node? This decision shouldn’t be taken lightly; it will have an impact on the amount of
time required to perform operations on the trie and space used to represent the trie. In this problem, you’ll
analyze the time/space tradeofs involved in three diferent representations.

Let’s introduce some terminology that we’ll use throughout this problem. When referring to a trie, we’ll
have Σ represent the set of characters that can appear in the strings we’ll be storing. An assumption that’s
common throughout Theoryland that’s also usually true in practice is that, given some character x ∈ Σ, it’s
possible to map x to some integer in {0, 1, 2, …, |Σ| – 1} in time O(1), making it possible to do indef-
based lookups on characters efciently. We’ll also assume that each character tts into a machine word.

Additionally, we’ll have m denote the number of total nodes in the trie, and we’ll have n denote the num-
ber of total words stored in the trie. (Make sure you see why these aren’t necessarily the same!)

First, suppose you decide to store the child pointers in each trie node as an array of size |Σ|. Each pointer
in that array points to the child labeled with that character and is null if there is no child with that label.

i. Give a big-Θ efpression for the total memory usage of this trie. Then, give the big-O runtime of
looking up a string of length L in a trie represented this way. Briefy  ustify your answers.

The above approach is one of the more common ways of implementing tries because of the speed of per-
forming a lookup. However, as you can see, the memory usage isn’t great.

Now, let’s imagine that you decide to store the child pointers in each trie node in a binary search tree.
Each node in the BST stores (in addition to its left and right telds) a pair of a character and a pointer to
the trie node at the end of the edge labeled with that character. (This representation of a trie is sometimes
called a ternary search tree.)

ii. Find an asymptotically tight (big-Θ) efpression for the space used by a ternary search tree. As a
way of checking your work, your overall efpression should have no dependence on |Σ|. (Whoa!
That’s unefpected!)

The cost of performing a search in a trie represented this way depends on the particular shape of the
BSTs stored in each node.

iii. Suppose each node in the ternary search tree stores its children in a balanced BST. What is the
runtime (in big-O notation) of performing a lookup of a string of length L in such a data struc-
ture?

As you can see here, there’s a time/space tradeof involved in using ternary search trees as opposed to an
array-based trie. The (asymptotic) memory usage is lower for the ternary search tree than for the array-
based trie, but the lookups are slightly slower.

(Continued on the next page)
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It’s relatively common to see tries built for medium-sized collections of strings built from very large al-
phabets. For efample, suppose you want to store your contacts in a trie. Each person’s name would proba-
bly be represented as a Unicode string (where |Σ| is around 140,000), but you’d probably only have a cou-
ple hundred contacts (n would be around 500 or so). If you have a bunch of friends from diferent parts of
the world and try representing their names in their native alphabets, you’re really going to feel the efect of
a |Σ| or even log |Σ| term! For cases like these, where |Σ| is huge but n is not too large, there’s a very clever
way of representing a trie that completely eliminates any runtime or space dependence on Σ. The tech-
nique involves a surprisingly useful type of binary search tree called a weight-balanced tree.

Suppose that you have a set of keys x₁, …, x  ₖ that you'd like to store in a binary search tree. Each key is
associated with a positive weight  w₁,  …,  wₖ. We'll detne the  weight of a BST to be the sum of the
weights of all the keys in that tree. A weight-balanced tree is then detned as follows: the root node is
chosen so that the diference in weights between the left and right subtrees is as close to zero as possible,
and the left and right subtrees are then recursively constructed using the same rule.

iv. Suppose that the total weight in a weight-balanced tree is W. Prove that there is a universal con-
stant ε (that is, a constant that doesn't depend on W or the specitc tree chosen) where 0 < ε < 1
and the left subtree and right subtree of a weight-balanced tree each have weight at most εW.

This one is a little trickier than the preceding problems. You might have some luck tackling this
one by trst trying to tnd the most imbalanced weight-balanced tree that you can, then seeing if
you can use that intuition to put together a formal proof.

Imagine that we start with a ternary search tree, which already stores child pointers in a BST, but instead
of using a regular balanced BST, we instead store the child pointers for each node in weight-balanced
trees where the weight associated with each BST node is the number of strings stored in the subtrie asso-
ciated with the given child pointer.

v. Prove that looking up a string of length L in a trie represented this way takes time O(L + log n).
As a hint, imagine that you have two bank accounts, one with O(L) dollars in it and one with
O(log n) dollars with it. Efplain how to charge each unit of work done by a search in a trie repre-
sented this way to one of the two accounts without ever overdrawing your funds.

So now we have three ways of representing a trie.

• You can use a regular old array for the child pointers. That gives you crazy fast lookups, but the
memory usage grows pretty quickly with |Σ|. This would be great in a setting like computational
genomics where |Σ| is tiny.

• You can store all the child pointers in a balanced BST. This reduces the space down to a much
more manageable amount, but slows down your searches in the event that your alphabet gets large.

• You can store all the child pointers in a weight-balanced tree. This has all the space advantages of
the above approach, but makes lookups much faster in the case where the trie doesn’t have too
many strings in it.

We’ll spin back around to weight-balanced trees in a few weeks; they have all sorts of applications!

There are a bunch of other ways you can encode tries, each of which has its advantages and disadvan-
tages. If you liked this problem, consider looking into this as a topic for your tnal pro ect.
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Problem Two: Longest k-Repeated Substrings  7 Points)
In Thursday’s lecture, we saw how to tnd the longest repeated substring of a string of length m in time
O(m) by using a suff tree. (Remember that those repeats can overlap, so in the string banana, the long-
est repeated substring would be ana, not na.)

i. Design and describe an O(m)-time algorithm for the longest repeated substring problem that uses
suff arrays and LCP information instead of suff trees.

The longest k-repeated substring problem is the following: given a string T and a number k, what is the
longest substring of T that appears at least k times in T?

ii. Design and describe an O(m)-time, suff-tree-based algorithm for solving the longest k-repeated
substring problem. Note that there should be no runtime dependence on k.

iii. Design and describe an O(m)-time, suff-array-based algorithm for solving the longest k-repeated
substring problem. Note that there should be no runtime dependence on k.

Problem Three: Suff Array Search  3 Points)
Suff arrays are one of those data structures that make a lot more sense once you’re sitting down and
writing code with them. To help you get a better handle on suff arrays, in the remainder of this assign-
ment we’re going to ask you to code up some functions that operate on suff arrays so that you can see
what they look like and feel like in practice.

We've provided C++ starter  tles at  /usr/class/cs166/assignments/ps2 and a  Maketle that  will
build the pro ect. To get warmed up with the starter tles, we’d like you to begin by writing some code that
makes you a client of a suff array.

In the tle Search.cpp, implement the function

vector<size_t> searchFor(const string& pattern, 
                         const string& text,    
                         const SuffixArray& sa);

that  takes  as  input  a  pattern  string,  a  teft  string,  and  a  suff  array  for  that  teft,  then  returns  a
vector<size_t> containing all indices where that pattern string matches the teft string. Your algorithm
should run in time O(n log m + z), where m is the length of the teft string to search in, n is the length of
the teft string to search for, and z is the number of matches.

To run fully automated correctness tests, efecute ./test-search from the command-line. That program
will generate suff arrays for a bunch of strings, then compare the output of your searchFor function
against a naive, brute-force search.

For an interactive program that will let you get a sense for what your code is doing, run ./explore and
see what you tnd!

Some notes to keep in mind:

• Notice that the time for reporting matches is O(z), which doesn’t depend on the length of the
string being searched for. This means that you will need to spend time O(1) reporting each match.

• By convention, if you search for the empty string in a string of length m, you should get back m+1
total matches: one before each character, and one at the end of the string.
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Problem Four: Implementing SA-IS  15 Points)
Your tnal task is to implement a function

SuffixArray sais(const vector<size_t>& text);

that takes as input a teft string (described below), then uses the SA-IS algorithm to construct a suff ar-
ray for that string.

You might notice that the input to this function is a list of numbers rather than a string. To make things a
bit easier, you’ll receive your input as a sequence of numbers representing the rank order of the characters
of the original string. For efample, if the string in question is abracadabra$, we’d give you as input the
sequence [1, 2, 5, 1, 3, 1, 4, 1, 2, 5, 1, 0]. You don’t need to append a sentinel; the input
will always be terminated with a 0, representing the sentinel at the end of the string.

There’s a fair amount of code to write here, but if you proceed slowly and test each piece of your code as
you go, we think you’ll tnd that it’s not that bad. Our reference solution is under 250 lines and is well-
commented and decomposed. (In other words, we weren’t optimizing for line counts by sacritcing code
quality.) Be sure to run your code in valgrind with optimization turned of as you’re doing your develop-
ment – it’s a great way to catch of-by-one errors.

To help you get SA-IS working, we’ve put together a breakdown of the individual steps of the algorithm,
along with some advice and a worked efample that will help you check that each step is working properly.

Step One: Annotate each character and fnd the LMS characters.

Your trst step is to take the input string and to tag each suff as either S- type or L- type.The easiest way
to do this is with a reverse scan of the characters in the input string.

As long as you’re classifying suffes this way, we recommend that you also create a list of the starting po-
sitions of all the LMS-type suffes. You’ll need this later on. Our reference solution builds up this list in
the order in which those LMS suffes appear.

You can test your code by running

./run-sais-on [sample-string]

from the command-line. Don’t include a sentinel at the end of your string; our program will do that for
you. As a test case, given the input string  ACGTGCCTAGCCTACCGTGCC, your program should classify the
characters as follows, with LMS strings marked with stars:

★ ★ ★ ★ ★

S S S L L S S L S L S S L S S S S L L L L S

A C G T G C C T A G C C T A C C G T G C C $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 

We also recommend checking your implementation against our sample DNA sequence from Tuesday’s
lecture, since we’ve already worked out all the intermediate steps for you. Some notes:

• Remember that the sentinel is detned to be S-type.

• In order for a suff to be an LMS suff, it must be preceded by an L-type suff. This means that
an S- type suff at the beginning of the string is not considered an LMS suff. (The one efcep-
tion: the sentinel is always considered to be an LMS suff.)
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Step Two: Implement Induced Sorting

There are two points in this algorithm where you’ll need to use induced sorting, so we recommend factor-
ing out the logic to do that into its own helper function (or helper functions, depending on how you want
to approach this). The trst time you call this function, you’ll place the LMS suffes into the ends of their
buckets sorted only by their trst character. The second time around, you’ll pass the LMS suffes in in
sorted order and position them at the ends of their buckets in the same relative order in which they were
passed into the function.

As a refresher, induced sorting trst creates an empty suff array, then makes three linear scans:

• A reverse pass over the input array of LMS suffes, placing each one into the neft free slot at the
end of its bucket.

• A forward pass over the suff array, tnding L-type suffes and placing them into the trst free slot
at the front of their buckets.

• A reverse pass over the suff array, tnding S-type suffes and placing them into the trst free slot
at the end of their buckets.

If you use the sample string shown above and pass the list of LMS suffes into your induced sorting func-
tion in the order in which they appear in the original string, you should see the following after each pass:

After Pass 1:

$ A C G T

21 - 8 13 - - - - - - - 5 10 - - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 

After Pass 2:

$ A C G T

21 - 8 13 20 19 - - - - - 5 10 18 4 9 - - 7 12 17 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 

After Pass 3:

$ A C G T

21 13 0 8 20 19 14 5 10 15 1 6 11 18 4 9 16 2 7 12 17 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 

Some notes on this part of the algorithm:

• To make this step run efciently, you’ll need to maintain some sort of mapping from characters to
the start and end of the range demarcating their buckets. Make sure you can construct this in lin-
ear time.

• Remember that the third pass of induced sorting may overwrite the original LMS suffes placed
at the end of each bucket. (You can see this above in the A and C buckets.) This means that you’ll
need to reset the end of each bucket range before the third pass over the array.

You may also want to test out the sample string from lecture, since you also know what to efpect there.
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Step Three: Form the Reduced String

The purpose of this trst induced sort was to get the LMS blocks into sorted order. If you’ll recall, an
LMS block is a substring of the original string that spans from one LMS character to another. (The sen-
tinel by itself is also detned to be an LMS block). The goal now is to form the reduced string by taking
the trst LMS suff and replacing each LMS block with that block’s sorted indef.

The good news is that by reading of the LMS suffes in the order in which they appear in the induce-
sorted array, you’ll get back the LMS blocks in sorted order. Your neft task is to assign each block a num-
ber corresponding to its sorted indef, with all identical blocks receiving the same number. Because the
blocks are stored in sorted order, you  ust need to check whether each block is equal to the one before it.
If so, it’s a duplicate and gets the same number as the block before it. If not, it gets the neft block num-
ber. (The sentinel as a block by itself always gets indef 0).

To check whether two blocks are equal,  ust do a linear scan over their characters and see if they match.
(In lecture, we talked about a modited comparison method in which we compared both the characters
and their L/S types; when you’re coding this up, you do not need to do this. You can  ust compare the
characters themselves.) Remember that the end of a block is delimited by the neft LMS character in the
string. Fortunately, you don’t need to do any special bounds-checking here – your scans will never be able
to run of the string.

Continuing from our worked efample above, the LMS suffes you should get back from the induce-
sorted array will be in the order 21, 13, 8, 5, 10. Those correspond to these LMS blocks:

$     ACCGTGCC$     AGC     CCTA    CCTA
If you’ve done everything properly at the end of this step, you should end up with this reduced string:

3 2 3 1 0
To see where this comes from, notice that the trst LMS suff in the original string is

CCTAGCCTACCGTGCC$
which is then broken down into

CCTA     AGC     CCTA     ACCGTGCC$     $
which, once the blocks are mapped to their indef, works out to 32310. 

Some things to watch out for in this step:

• This step involves maintaining indices into several diferent arrays. There are indices into the orig-
inal teft string, into the suff array, into the partially-sorted list of LMS suffes, and into the
newly-formed reduced string. Be careful to keep all of these separated – naming your variables in-
telligently can help a lot.

• Make sure that your logic to assign numbers to the LMS blocks runs in O(m) time. Because the
LMS blocks are in sorted order, you only need to compare ad acent blocks and don’t need to
check all pairs against one another.

• Once you’ve determined what number each LMS block should be assigned, you need to tnd a way
to put that block label into the right spot in the reduced string in time O(1). There are many ways
to do this. Be creative!

• If you’ve done everything properly, the reduced string should always end with a 0. There is no
need to manually append anything. (Do you see why this is guaranteed to happen?)

Again, feel free to use the running efample from lecture as another way of checking your work.



8 / 9 

Step Four: Sort the LMS Substrings

You now have your reduced string. Your task at this point is to form the suff array for that reduced
string, which will then let you sort the LMS suffes. (Oh yeah… that’s why we’re doing this!)

There are two possibilities here. First, imagine that your reduced string had no duplicated blocks in it. In
that case, that reduced string is some permutation of 0, 1, 2, …, k – 1, where k is the total number of
blocks. In this case, you can compute the suff array directly in time Θ(k).

The other option is that there’s at least one duplicated block. In that case, it’s not immediately obvious
how to compute the suff array for the reduced string, but that’s okay! We can use recursion to do this for
us! The “real” way to do this is to insert a recursive call to SA-IS on the reduced string. But since you’re
still getting this algorithm up and running, we recommend, for the moment, cheating and placing a call to
another one of the suff array construction algorithms packaged with the starter tles. The dc3 function
uses another linear-time suff array construction algorithm (Diference Cover 3) and it runs pretty fast, so
feel free to place in a call to dc3 here.

To check your work, if you’re following along with the running efample, you should get back this suff
array:

4  3  1  2  0

Once you’ve done this, you can use this suff array to sort the LMS substrings. How? Well, if you have
an array consisting of all the LMS suffes in the order in which they appear in the original string, you  ust
need to reorder them so that their order matches the order given by the suff array. You might tnd this
step pretty similar to the one you did in the case where all the blocks were unique.

To check your work, you should end up with the LMS suffes in this order:

21  13  8  10  5

Some notes:

• The SA-IS algorithm is unusual in that the optimization described here (manually forming the
suff array when all the blocks are distinct) serves as the base case for the recursion. Don’t skip
this step, since otherwise you’ll end up with nonterminating recursion later on!

• Remember that the suff array is set up so that SA[i] is the indef of the ith-smallest suff, rather
than the position that the suff starting at position i occupies in sorted order.
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Step Five: The Last Induced Sort, and Making Things Recursive

Home stretch! Now that you have the LMS suffes in their proper order, you can make one last call to in-
duced sorting given this ordering of the LMS suffes. That will properly put all the suffes in the right
order, and you have your suff array!

Here’s what the suff array should look like at the end of each of the three passes:

After Pass 1:

$ A C G T

21 - 13 8 - - - - - - - 10 5 - - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 

After Pass 2:

$ A C G T

21 - 13 8 20 19 - - - - - 10 5 18 9 4 - - 12 7 17 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 

After Pass 3:

$ A C G T

21 13 0 8 20 19 14 10 5 15 1 11 6 18 9 4 16 2 12 7 17 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 

That last one is the tnal suff array!

If your output matches ours, go back to where you compute the suff array for the reduced string. Re-
place the call to dc3 with a recursive call to sais. Try running the algorithm one more time to see if it
still works. If so, great! If not, take some time to debug what’s going on.

Step Six: Test, Test, Test!

At this point you have an initial draft of your implementation, and all that’s left to do is to test it and
smoke out any remaining bugs.

Run the program

./test-sais

from the command-line. This will sub ect your implementation to a pretty serious battery of tests, starting
with the sample string shown above and the one from lecture, then progressing to much bigger efamples.
It’ll compare your answer against the suff array generated by our DC3 implementation and let you know
if anything fails.

And then that’s it! You’re done! Change the compiler fags in the Maketle to disabling debugging and
ramp the optimizer to -O3. Now run the ./explore program and try feeding in some of the sample data
tles. Find any interesting strings or patterns in them?


